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A theoretical model of electromigrative, diffusive and convective transport in
polymer-gel composites is presented. Bulk properties are derived from the standard
electrokinetic model with an impenetrable charged sphere embedded in an electrolyte-
saturated Brinkman medium. Because the microstructure can be carefully controlled,
these materials are promising candidates for enhanced gel-electrophoresis, chemical
sensing, drug delivery, and microfluidic pumping technologies. The methodology
provides solutions for situations where perturbations from equilibrium are induced
by gradients of electrostatic potential, concentration and pressure. While the
volume fraction of the inclusions should be small, Maxwell’s well-known theory
of conduction suggests that the model may also be accurate at moderate volume
fractions. In this work, the theory is used to compute ion fluxes, electrical
current density, and convective flow driven by an electric field applied to an
homogeneous composite. The electric-field-induced (electro-osmotic) flow is a sensitive
indicator of the inclusion ζ -potential and size, electrolyte concentration, and Darcy
permeability of the gel, while the electrical conductivity is usually independent of
the polymer gel and is relatively insensitive to characteristics of the inclusions and
electrolyte.

1. Introduction
Gel-electrophoresis is widely used to sort macromolecules based on their size and

electrical charge. Selectivity to size is achieved by adjusting the permeability of
the gel (e.g. agarose or polyacrylamide) through the concentrations of monomer,
cross-linker, catalyst and initiator used in the gel synthesis. Molecular sorting based
on other characteristics, such as receptor–ligand binding affinity, requires the gel
to exhibit specific physicochemical activity. One way to achieve this in a controlled
manner is to embed surface-functionalized particles (e.g. biological cells, and synthetic
polymer or silica spheres) in a conventional polymer gel. Accordingly, this work seeks
to quantify the influence of surface charge on transport driven by gradients of
chemical and electrostatic potential. While the task is simplified to some extent by
limiting the analysis to simple electrolytes whose mobilities are unhindered by the
polymer gel, the methodology provides a significant step toward a theory that also
accounts for hindered transport of larger electrolyte ions (e.g. proteins and DNA
fragments).

This work also provides a quantitative interpretation of novel diagnostic tests – ana-
logous to well-established microelectrophoresis and conductivity measurements – that
probe the surface charge or ζ -potential of immobilized colloids in electrolytes where
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the particles would otherwise aggregate. Attractive particle-interaction potentials
arise when the solution pH approaches the isoelectric point of the particle–electrolyte
interface, or the surface charge is sufficiently well screened by added salt (Russel,
Saville & Schowalter 1989). By immobilizing colloids in an (ideally) inert (uncharged)
polymer gel, at a pH and ionic strength where the interactions are repulsive, the pH
and ionic strength may be varied without inducing coagulation.

Membranes of sintered glass beads (without intervening polymer) have long been
used in ion-selective electrodes, and, more recently, as electro-osmotic pumps (e.g.
Yao et al. 2003). Their simple design (no moving parts) and high-pressure low-flow
characteristics are ideally suited to microfluidic applications. Filling the void space
with a permeable, uncharged polymer gel, as proposed in this work, will increase
viscous dissipation and, therefore, diminish pumping efficiency. Nevertheless, because
applications are envisioned where poor pumping efficiency might be tolerated in view
of other attributes, a quantitative analysis of electro-osmotic pumping is undertaken
here.

The charge on particles dispersed in an electrolyte endows them with an
electrophoretic mobility (Russel et al. 1989). Theoretical interpretation of the mobility
(O’Brien & White 1978), sedimentation potential (Saville 1982), low-frequency
conductivity (Saville 1979; O’Brien 1981), dielectric response (complex conductivity)
(DeLacey & White 1981), and electroacoustic response (dynamic mobility) (O’Brien
1988, 1990) is widely used to infer the surface charge and, therefore, to indicate
dispersion stability. Closely related are streaming-potential and streaming-current
devices, which are used to infer the charge on macroscopic substrates, and the charge
density and permeability of porous plugs and coatings (e.g. Hunter 2001; Dukhin,
Zimmerman & Werner 2004).

This paper addresses a new but related problem in which impenetrable spheres with
surface charge are randomly dispersed and immobilized in a permeable, electrolyte-
saturated polymer gel (see figure 1). The transport processes that take place with
the application of average (macroscale) gradients of electrostatic potential, electrolyte
concentration and pressure are derived. While transport of electrolyte ions is relatively
straightforward to calculate in an homogeneous, uncharged gel, charged inclusions
disturb the applied fields, and applied fields disturb the equilibrium state of the diffuse
double layers, so the resulting fluxes reflect a complex coupling of electromigration,
diffusion, and convective transport.

Electrokinetic theories are often based on the standard electrokinetic model
(Overbeek 1943; Booth 1950), whereby continuum equations governing the electric
field, mobile charge (microions), mass, and momentum are solved with appropriate
boundary conditions. The principal difficulty usually lies in capturing double-layer
polarization and relaxation at surfaces whose radius of curvature is comparable to
or smaller than the equilibrium double-layer thickness (Debye length). For ‘bare’ and
‘soft’ (polymer-coated) particles, polarization and relaxation can be addressed with
novel numerical methodologies (O’Brien & White 1978; Hill, Saville & Russel 2003). In
this work, a numerically exact solution of the problem is achieved for the low-volume-
fraction limit where particle interactions can be neglected. The methodology also
neglects quadratic and higher-order perturbations to the equilibrium state, providing
asymptotic coefficients that characterize the far-field (power-law) decays of the velocity
disturbance and perturbations to the equilibrium electric field and ion concentrations.
In turn, the asymptotic coefficients are linked to bulk properties of the composite.
The analysis resembles Maxwell’s theory for the effective conductivity of a dilute,
random configuration of spherical inclusions.
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Dipolar disturbances† arise in the limit where the inclusions are uncharged. Then,
with the application of a uniform electric field, the perturbed electrostatic potential
ψ ′ reflects the non-conducting (impenetrable) surface of the inclusions, satisfying
∇2ψ ′ = 0. Similarly, when subjected to a bulk concentration gradient, the perturbed
ion concentrations n′ satisfy ∇2n′ = 0. In both cases, there is no convective flux, because
the electrolyte is everywhere electrically neutral. With a uniform pressure gradient
〈∇p〉, the problem simplifies to the flow of an incompressible Newtonian fluid through
a Brinkman medium with impenetrable inclusions. The (solenoidal) velocity u satisfies
η∇2u − ∇p − (η/�2)u = 0, where p is the pressure, η is the fluid viscosity, and � is
the Brinkman screening length (square root of the Darcy permeability). When the
inclusion radius a � �, u = −(�2/η)∇p with ∇2p = 0 (Darcy flow), and the drag force
on the inclusions is 2πηUa3�−2, where U = −(�2/η)〈∇p〉 + O(φ) is the average fluid
velocity. In this limit, the inclusion contribution to the average drag force (per unit
volume) of the composite is n2πηUa3�−2 = (3/2)φηU�−2, where n is the inclusion
number density and φ = n(4/3)πa3 is the volume fraction. With the same far-field
velocity, the drag force on each inclusion is clearly much greater than the Stokes drag
force 6πηaU . Note also that the velocity disturbances u′ = u−U = −(1/2)a3Uj (δij r

−3−
3xixj r

−5) decay as r−3 when the distance from the inclusions r � a � �.
When the inclusions are charged, a diffuse layer of mobile counter-ions envelops

each inclusion, and electroneutrality demands that the net charge in the diffuse
layers balances the immobile surface charge. With an applied electric field, the
electrical body force within the diffuse layers drives an ‘inner’ flow which, in turn,
drives an O(φ) ‘outer’ flow, with an O(1) contribution due to an imposed pressure
gradient. The electric-field-induced velocity disturbances ‘pump’ fluid through the
polymer gel without exerting a net force on the composite. While the velocities are
very low, composites with a 1 cm2 cross-section can produce velocities of several
microns per second in a microchannel. Note that a pressure gradient is necessary to
overcome the drag required to pump fluid through an external network. However, the
pressure-driven contribution to the flow is often small compared to the electric-field-
induced flow. Under these conditions, the electric-field-induced flow rate is practically
independent of the pressure gradient, and the maximum pressure gradient that can
be sustained is limited by the strength of the composite and its support.

Ion fluxes manifest in an electrical current and, hence, a measurable electrical
conductivity. Following earlier treatments of the low-frequency conductivity of dilute
colloidal dispersions (Saville 1979; O’Brien 1981), the incremental contribution of the
inclusions to the effective conductivity is calculated. These results link conductivity
measurements to the particle surface charge density, for example. Because the fluxes
are dominated by electromigration, the conductivity is not significantly influenced by
the gel.

The model also provides the effective diffusivities of electrolyte ions when the bulk
electrolyte concentration varies slowly in space and time. In a companion paper (Hill
2006), two important situations are examined: (i) bulk diffusion in the absence of an
average electric field, and (ii) bulk diffusion with an electric field yielding zero current
density. The former provides a simple setting in which to demonstrate the influence
of the inclusions on the effective ion diffusion coefficients, whereas the latter provides
the particle contribution to the membrane diffusion potential, which is well known in

† Here, dipolar refers to axisymmetric disturbances, without a source, that satisfy Laplace’s
equation; these take the form αj∂r−1/∂xj = −αjxj r

−3, where r = |x| and αi are the components of
a constant vector.
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Figure 1. Schematic of the microscale system under consideration. Charged, impenetrable
inclusions (solid circles) with radius a ∼ 10 nm–10 µm are embedded in a continuous polymer
gel (solid filaments) saturated with aqueous electrolyte. Diffuse double layers (dash-dotted
circles) with thickness κ−1 ∼ 1–100 nm are perturbed by the application of an average electric
field −〈∇ψ〉, pressure gradient 〈∇p〉, or electrolyte concentration gradient 〈∇nj 〉. The Brinkman

screening length � ∼ 1–10 nm that specifies the Darcy permeability �2 of the gel is often small
compared to the radius of the inclusions.

the fields of membrane biology, electrochemistry, and electrochemical engineering. In
both cases, the particle contribution to these bulk properties may be comparable to
or larger than in the absence of inclusions.

The paper is organized as follows. We begin in § 2 with a description of the
electrokinetic model. First, the composite microstructure and an apparatus for
comparing theory and experiment are described. The subsections therein present
the electrokinetic transport equations (§ 2.1), which are used to compute linearly
independent solutions of the single-particle (microscale) problem (§ 2.2). Asymptotic
coefficients from solutions of the microscale problem capture far-field decays of
perturbations to the equilibrium state. These are used to calculate bulk ion fluxes
in § 2.3, and to derive an average momentum equation in § 2.4. Results are presented
in § 3 for composites with negatively charged inclusions in polymer gels saturated with
NaCl electrolyte. The subsections therein examine the incremental pore mobility (§ 3.1),
electro-osmotic pumping (§ 3.2), incremental pressure gradient (§ 3.3) and, finally,
species fluxes (§ 3.4) and electrical conductivity (§ 3.5). A brief summary follows in § 4.

2. Theory
The microstructure of the composites considered in this work is depicted in figure 1.

The continuous phase is a porous medium composed of an electrically neutral,
electrolyte-saturated polymer gel. A gel refers to a network of polymer chains that
is cross-linked so as to exhibit a solid-like (elastic) response to an applied stress.
Polyacrylamide gels are routinely used for the electrophoretic separation of DNA
segments in aqueous media. Their porosity may be controlled by adjusting the
average densities and ratio of the monomer (acrylamide) and cross-linker. In this
work, the hydrodynamic permeability is characterized by the Darcy permeability �2

(square of the Brinkman screening length), which reflects the hydrodynamic size as
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and concentration ns of the polymer segments. In turn, these reflect the degree of
cross-linking and the affinity of the polymer for the solvent.

Embedded in the polymer are randomly dispersed spherical inclusions. In model
systems, the inclusions are envisioned to be monodisperse silica or polymeric spheres,
which typically have radii in the range a = 10 nm–10 µm and bear a surface charge
when dispersed in aqueous media. The surface charge density may vary with the bulk
ionic strength and pH of the electrolyte. In this work, however, the surface charge
is to be inferred from the bulk ionic strength and surface potential ζ . Because the
inclusions are impenetrable with zero surface capacitance and conductivity, no-flux
and no-slip boundary conditions apply at their surfaces.

Note that the mobile ions whose charge is opposite to the surface-bound immobile
charge are referred to as counter-ions, with the other species referred to as co-ions.
For simplicity, the counter-charges, i.e. the dissociated counter-ions, are assumed
indistinguishable from the electrolyte counter-ions. Surrounding each inclusion is a
diffuse layer of mobile charge, with Debye thickness κ−1 and excess of counter-ions.
As described below, the layer structure is calculated from the well-known Poisson–
Boltzmann equation.

In this work, the polymer gel is assumed not to hinder ion motion. For larger ions
and dense polymer gels, the influence of the network on the diffusive, electromigrative
and convective fluxes may be modelled with an equation of motion for an ion

γ (u − v) − γ ′v + f = 0, (2.1)

where the first term represents the hydrodynamic drag due to relative motion, u and
v are the (average) fluid and ion velocities, and γ is the friction coefficient. The
second term approximates the force exerted by the polymer gel on the ion, with the
friction coefficient γ ′ reflecting the relative size of the ion and polymer interstices.
The third term accounts for electrical and thermal (Brownian) forces, depending on
the time-scale of interest. The unhindered ion velocity is v0 = u+ f /γ , so the hindered
velocity may be written v = v0γ /(γ + γ ′). Therefore, under steady conditions, the ion
conservation equation ∇ · (nv) = 0 is independent of γ ′ (n is the ion number density).
When u = 0, for example, the ion will diffuse (or electromigrate) with an effective
diffusivity (or mobility) De = Dγ/(γ + γ ′), where D is the unhindered diffusivity. It
follows that v = v0De/D, so the hindered flux equals the unhindered flux multiplied
by the ratio of the hindered to unhindered ion diffusivities (mobilities).

Now consider the influence of hindered ion migration on the fluid momentum
conservation equation. From (2.1), the (hydrodynamic drag) force exerted by an ion
on the solvent is

γ (v − u) = ( f − γ ′u)γ /(γ + γ ′), (2.2)

where f = −ze∇ψ is the electrical force on the ion (z is the valance, e is the elementary
charge, and ψ is the electrostatic potential). It follows that the net force (per unit
volume) exerted by the ions on the fluid is

−
N∑

j=1

nj (γ
′
j u + zje∇ψ)De

j/Dj , (2.3)

where the sum is over all N ion species. Clearly, as γ ′
j /γj → 0 when the hindrance of

the polymer is negligible, ions transfer their electrical force to the fluid. As γ ′
j /γj → ∞,

however, immobilized ions transfer the electrical force to the polymer, so the net force
exerted by each ion on the fluid becomes −γj u.
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Figure 2. Schematic of the macroscale system under consideration. A polymer gel embedded
with spherical charged inclusions (see figure 1) separates (by length L) two reservoirs containing
electrolyte with different species concentrations (n∞

j (z = 0) and n∞
j (z = L)) and, possibly,

pressures (p(z = 0) and p(z = L)). Electrodes on each side of the ‘bridge’ permit an electric
field to be applied and the differential electrostatic potential �ψ =ψ(z =L) − ψ(z = 0) to be
measured. The walls of the bridge are impenetrable and non-conducting.

A simple apparatus to realize the conditions under which the theory may be applied
is depicted in figure 2. The composite bridges two reservoirs, each, in general, with a
different electrolyte concentration and pressure. Electrodes are placed at each end of
the bridge, so either a uniform electric field can be established or an average electric
field strength measured. The channel is to realize constant ion fluxes under steady
or quasi-steady conditions. This makes the averaged microscale transport equations
easier to solve, but, in general, the averaged equations apply to macroscale fluxes in
two- and three-dimensional geometries when the (average) inclusion number density,
ion concentrations, electric field and fluid velocity vary slowly in space and time.

2.1. The electrokinetic transport equations

The transport equations and boundary conditions are presented here in dimensional
form. They comprise the nonlinear Poisson–Boltzmann equation

εoεs∇2ψ = −
N∑

j=1

(
nj − n

f
j

)
zje, (2.4)

where εo and εs are the permittivity of a vacuum and dielectric constant of the
electrolyte, nj are the concentrations of the j th mobile ions with valences zj , and ψ

and e are the electrostatic potential and elementary charge. In this work, the polymer
is uncharged, so the fixed charge density n

f
j is zero. For convenience, the valence of

the fixed charge is set opposite to that of its respective (mobile) counter-ion in (2.4);
this defines the concentration n

f
j .

Transport of the mobile ions is governed by

6πηaj (u − vj ) − zje∇ψ − kT ∇ ln nj = 0 (j = 1, . . . , N), (2.5)

where aj are Stokes radii of the ions, obtained from limiting conductances or
diffusivities, η is the electrolyte viscosity, u and vj are the fluid and ion velocities, and
kT is the thermal energy.

Ion diffusion coefficients, which are adopted throughout this paper, are

Dj = kT /(6πηaj ). (2.6)
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As usual, the double-layer thickness (Debye length)

κ−1 =
√

kT εsεo/(2Ie2) (2.7)

emerges from (2.4) and (2.5) where,

I = (1/2)

N∑
j=1

z2
jn

∞
j (2.8)

is the bulk (average) ionic strength, with n∞
j the bulk ion concentrations.

Ion conservation demands

∂nj/∂t = −∇ · (njvj ) (j = 1, . . . , N), (2.9)

where t is the time, and the ion fluxes

j j = njvj = −Dj ∇nj − zje
Dj

kT
nj ∇ψ + nj u (2.10)

are obtained from (2.5).
Similarly, momentum and mass conservation require

ρs∂u/∂t = η∇2u − ∇p − (η/�2)u −
N∑

j=1

njzj e∇ψ (2.11)

and

∇ · u = 0, (2.12)

where ρs and u are the electrolyte density and velocity, and p is the pressure. Note
that −(η/�2)u represents the hydrodynamic drag force exerted by the polymer on the
electrolyte. The Darcy permeability �2 (square of the Brinkman screening length) of
the gel may be expressed as

�2 = 1/[ns(r)6πasFs] = 2a2
s /[9φs(r)Fs(φs)], (2.13)

where ns(r) is the concentration of Stokes resistance centres, with as and Fs(φs)
the Stokes radius and drag coefficient of the polymer segments. In this work, ns is
constant, but, in general, may vary with radial position r from the centre of each
inclusion. Note also that the Brinkman screening length is adjusted according to
(2.13) by varying the (uniform) polymer segment density with Stokes radius as =1 Å.
The drag coefficient Fs is obtained from a correlation developed by Koch & Sangani
(1999) for random fixed beds of spheres. While the microstructure of a polymer gel
is clearly not the same as that of a random bed of spheres, the model is intended
to capture the significant influence of hydrodynamic interactions on the permeability
when the volume fraction of polymer is not small. In this work, however, only the
reported values of � are relevant. For example, the value � ≈ 0.951 nm, which is
adopted for the principal set of results tabulated below, reflects a polymer segment
concentration ns that yields � = 1 nm according to (2.13) when the Stokes radius
as = 1 Å and the drag coefficient Fs = 1. Because the hydrodynamic volume fraction
φs = ns(4/3)πa3

s > 0, Fs(φs) > 1 and, hence, � is slightly less than the targeted value.

2.1.1. Inner (particle surface) boundary conditions

Either the equilibrium surface potential ζ or surface charge density σ may be
specified. Because the surface (r = a) is assumed impenetrable with zero capacitance
and conductivity, the surface charge is constant, permitting no-flux boundary
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conditions for each (mobile) ion species. As usual, the no-slip boundary condition
applies. It follows that (inner) boundary conditions are either

ψ = ζ at r = a (2.14)

or

εsεo∇ψ |out · n̂ − εpεo∇ψ |in · n̂ = −σ at r = a, (2.15)

with

njvj · n̂ = 0 at r = a (2.16)

and

u = 0 at r = a, (2.17)

where n̂ = er is an outward unit normal and εp is the particle dielectric constant.

2.1.2. Outer (far-field) boundary conditions

Neglecting particle interactions requires far-field boundary conditions

ψ → −E · r as r → ∞, (2.18)

nj → n∞
j + Bj · r as r → ∞, (2.19)

u → U as r → ∞, (2.20)

where E, Bj and U are, respectively, a constant electric field, constant species
concentration gradients, and constant far-field velocity.

2.2. Solution of the equations

2.2.1. Equilibrium state

When E = Bj = U = 0, equilibrium is specified according to

εoεs∇2ψ0 = −
N∑

j=1

(
n0

j − n
f
j

)
zje, (2.21)

0 = ∇ ·
[
Dj ∇n0

j + zje
Dj

kT
n0

j ∇ψ0

]
, (2.22)

0 = −∇p0 −
N∑

j=1

n0
j zj e∇ψ0, (2.23)

with boundary conditions

ψ0 = ζ at r = a, (2.24)

εsεo∇ψ0|out · er − εpεo∇ψ0|in · er = −σ at r = a, (2.25)

n0
j

[
Dj ∇n0

j + zje
Dj

kT
n0

j ∇ψ0

]
· er = 0 at r = a, (2.26)

and

ψ0 → 0 as r → ∞, (2.27)

n0
j → n∞

j as r → ∞. (2.28)

2.2.2. Linearized perturbed state

Perturbations to the equilibrium state (above) are introduced via

ψ = ψ0 − E · r + ψ ′, (2.29)
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nj = n0
j + Bj · r + n′

j , (2.30)

p = p0 + P · r + p′, (2.31)

where the first terms on the right-hand sides denote the equilibrium values, with
the primed quantities denoting perturbations. Note that P is the far-field pressure
gradient required to sustain a far-field velocity U = −(�2/η)P .

With ‘forcing’

X = Xez, (2.32)

where X ∈ {E, Bj , U} (in general, a linear combination of these variables), the
linearized perturbations are symmetric about the z-axis (θ =0) of a spherical polar
coordinate system, taking the forms

ψ ′ = ψ̂(r)X · er , (2.33)

n′
j = n̂j (r)X · er , (2.34)

u = U + u′, (2.35)

where

u′ = ∇ × ∇ × h(r)X

= −2(hr/r)(X · er )er − (hrr + hr/r)(X · eθ )eθ . (2.36)

Equation (2.36) guarantees a solenoidal (incompressible) velocity field, which
permits the momentum equation to be solved by applying the curl ∇×, thereby
eliminating the pressure and yielding a scalar equation for the single non-zero
component of the vorticity ∇ × u = ωφeφ . The perturbations satisfy

εoεs∇2ψ ′ = −
N∑

j=1

(n′
j + Bj · r)zje, (2.37)

and

∇ · j j = 0, (2.38)

where

j j = −Dj (∇n′
j + Bj ) − zje

Dj

kT
(n′

j + Bj · r)∇ψ0

− zje
Dj

kT
n0

j (∇ψ ′ − E) + n0
j (U + u′), (2.39)

η∇2u′ − ∇p′ − (η/�2)(U + u′) −
N∑

j=1

n0
j zj e(∇ψ ′ − E)

−
N∑

j=1

(n′
j + Bj · r)zje∇ψ0 = 0, (2.40)

∇ · u′ = 0, (2.41)

with boundary conditions

εsεo(∇ψ ′ − E)|out · er − εpεo(∇ψ ′ − E)|in · er = 0 at r = a, (2.42)
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Dj (∇n′

j + Bj ) + zje
Dj

kT
(n′

j + Bj · r)∇ψ0

+ zje
Dj

kT
n0

j (∇ψ ′ − E) − n0
j (U + u′)

]
· er = 0 at r = a, (2.43)

u′ = −U at r = a, (2.44)

and

ψ ′ → (X · er )D
X/r2 as r → ∞, (2.45)

n′
j → (X · er )C

X
j /r2 as r → ∞, (2.46)

u′ → −2(CX/r3)(X · er )er − (CX/r3)(X · eθ )eθ as r → ∞. (2.47)

In the far field, the velocity disturbance u′ is proportional to the gradient of p′,
which, like the electrostatic potential and ion concentrations, is dipolar. Accordingly,
u′ decays as r−3, and DX and CX

j will often be referred to as the strength of the
electrostatic and concentration polarization (or dipole moments) induced by the field
X ∈ {E, Bj , U}.

The dimensions of the asymptotic coefficients DX , CX
j and CX , which depend on

the respective X ∈ {E, Bj , U}, are easily worked out by inspecting (2.45)–(2.47).
For convenience, dimensionless values are presented in the tables in § 3 below with a,
u∗ = εsεo(kT /e)2/(ηa), 2I and kT /e as the scales for length, velocity, ion concentrations
and electrostatic potential, respectively.

2.2.3. Superposition

The equations are solved using a numerical methodology developed by Hill et al.
(2003) for the electrophoretic mobility of polymer-coated colloids. Solutions with
E, Bj and U set to arbitrary values can be computed, provided

∑N

j = 1 zjBj =0 to
ensure an electrically neutral far field. However, when N species are assembled into M

electroneutral groups (e.g. electrolytes or neutral tracers), each with far-field gradient
Bk (k = 1, . . . , M), it is expedient to compute solutions with only one non-zero value
of E, Bk or U . Then, arbitrary solutions can be obtained by linear superposition
(O’Brien & White 1978).

An index k′ is required to identify the (electroneutral) group to which the j th species
under consideration is assigned. Careful consideration of the electrolyte composition
and ion valences is required to ensure consistency. For z-z electrolytes it is convenient
to set Bj = Bk , whereas for a single 2-1 electrolyte (e.g. CaCl2) is it satisfactory to set
Bj = Bk′/|zj |. For the relatively simple situations considered in this work, the (single)
electroneutral group is NaCl, so M = 1 with k = k′ = 1, and j =1 and 2 for Na+ and
Cl−, respectively.

Note that C
Bk

j , for example, is the asymptotic coefficient for the perturbed
concentration of the j th species induced by the kth concentration gradient Bk ,
whereas CBk (without a subscript) denotes the asymptotic coefficient for the flow
induced by Bk .

For neutral species, the concentration disturbance produced by a single impenetrable

sphere yields C
Bk′
j = (1/2)a3, otherwise C

Bk

j =0 (k = k′). Clearly, the asymptotic
coefficients for charged species, whose concentration perturbations are influenced
by electromigration, are not the same as for neutral species; for ions, C

Bk′
j → (1/2)a3

as |ζ | → 0, however.
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With co-linear forcing and bulk electroneutrality, linear superposition gives far-field
decays

ψ ′ → (1/r2)

[
EDE +

M∑
k=1

BkD
Bk + UDU

]
(ez · er ) as r → ∞, (2.48)

n′
j → (1/r2)

[
ECE

j +

M∑
k=1

BkC
Bk

j + UCU
j

]
(ez · er ) as r → ∞, (2.49)

u′ → −(2/r3)

[
ECE +

M∑
k=1

BkC
Bk + UCU

]
(ez · er )er

− (1/r3)

[
ECE +

M∑
k=1

BkC
Bk + UCU

]
(ez · eθ )eθ as r → ∞. (2.50)

This work is primarily concerned with situations where only one X ∈ {E, Bj , U}
is applied. Following O’Brien & White (1978), these are referred to as the (E), (B)
and (U) (microscale) problems. Algebraic or differential relationships between the
averaged fields may be applied to ensure zero average current density, for example.
The next section relates (microscale) E, Bj and U to the averaged (macroscale) fields,
e.g. −〈∇ψ〉, 〈∇nj 〉 and 〈u〉, in dilute composites.

2.3. Averaged (bulk) fluxes

Here we calculate the average flux of the j th species

〈 j j 〉 = V −1

∫
j j dV, (2.51)

where the volume of integration includes the continuous and discrete phases. If the
size of the representative elementary volume is between the micro- and macroscales,
the result is equivalent to sampling the flux (at a point) over all micro-structural
configurations (ensemble average).

Following Saville (1979) and O’Brien (1981), the averaging can be accomplished by
adding and subtracting the flux

−Dj ∇nj − zje
Dj

kT
n∞

j ∇ψ + n∞
j u (2.52)

from the integrand in (2.51). This yields the macroscopic electromigrative, diffusive
and convective fluxes in the absence of inclusions, plus an integral whose integrand
is exponentially small beyond the diffuse double layers, i.e.

〈 j j 〉 = −zje
Dj

kT
n∞

j 〈∇ψ〉 − Dj 〈∇nj 〉 + n∞
j 〈u〉

+ V −1

∫ [
zje

Dj

kT
n∞

j ∇ψ + Dj ∇nj − n∞
j u + j j

]
dV. (2.53)

Applying the divergence theorem† and noting that ∇ · j j =0, the volume integral in
(2.53) becomes

† Note also that
∫

V
αdV =

∫
A

xα · n̂ dA −
∫

V
x∇ · α dV , where α represents an arbitrary vector

field.
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zje

Dj

kT
n∞

j ψ n̂ dA −
∫

zje
Dj

kT
nj (∇ψ · n̂)r dA

+

∫
Djnj n̂ dA −

∫
Dj (∇nj · n̂)r dA +

∫
(nj − n∞

j )(u · n̂)r dA, (2.54)

where the surface integrals enclose the inclusions and their respective equilibrium
double layer, with n̂ directed outward, into the fluid.

For dilute composites, i.e. when n(4/3)π(a + κ−1)3 � 1, the integral over a
representative volume V equals nV integrals with a single particle at r = 0, each
with n̂ = er . Therefore, noting that n0

j − n∞
j is exponentially small as r → ∞, and that

n′
j and Bj · r are odd functions of position, the fluxes become

〈 j j 〉 ≈ n∞
j 〈u〉 − zje

Dj

kT
n∞

j 〈∇ψ〉 − Dj 〈∇nj 〉

+ nzje
Dj

kT
n∞

j

∫
r→∞

[ψ ′−(∇ψ ′ · r)]er dA + nDj

∫
r→∞

[n′
j − (∇n′

j · r)]er dA. (2.55)

On superposing solutions of the independent single-particle problems, the
microscale electromigrative and diffusive contributions to the average flux, i.e. the
last two terms in (2.55), are

nzje
Dj

kT
n∞

j

∫
r→∞

[ψ ′ − (∇ψ ′ · r)]er dA = n4πzje
Dj

kT
n∞

j

[
EDE +

M∑
k=1

BkD
Bk + UDU

]
,

(2.56)

and

nDj

∫
r→∞

[n′
j − (∇n′

j · r)]er dA = n4πDj

[
ECE

j +

M∑
k=1

BkC
Bk

j + UCU
j

]
. (2.57)

Note that r(α · er ) has been written as (α · r)er because r = rer , where α represents an
arbitrary vector field. Substituting (2.56) and (2.57) into (2.55) gives

〈 j j 〉 ≈ n∞
j 〈u〉 − zje

Dj

kT
n∞

j 〈∇ψ〉 − Dj 〈∇nj 〉

+ n4πzje
Dj

kT
n∞

j

[
EDE+

M∑
k=1

BkD
Bk+UDU

]
+n4πDj

[
ECE

j +

M∑
k=1

BkC
Bk

j +UCU
j

]
.

(2.58)

Note that the average fluxes are now expressed in terms of the asymptotic coefficients
from at most 2 + M independent single-particle problems, each of which is solved
‘exactly’ in this work.

2.4. Averaged (bulk) momentum conservation equations

In general, an average velocity 〈u〉 is produced by the application of an average
pressure gradient 〈∇p〉, electric field −〈∇ψ〉, or concentration gradients 〈∇nj 〉. This
section relates these to the asymptotic coefficients emerging from the single-particle
problem.

Averaging the fluid momentum equation gives (see the Appendix)

0 ≈ −〈∇p〉 − (η/�2)〈u〉 + η∇2〈u〉 − 〈ρ∇ψ〉 − n〈 f d〉 (2.59)
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where ρ = ρ0 + ρ ′ is the charge density and 〈 f d〉 is the average (hydrodynamic)
force exerted by the fluid on the inclusions. Note that inertia is neglected, as are
hydrodynamic and electrostatic interactions; the analysis is therefore limited to small
volume fractions n(4/3)π(a + κ−1)3 � 1.

Similarly to the average fluxes, let us adopt the single-particle problem to evaluate
〈 f d〉. For a single inclusion in an unbounded polymer gel,

〈 f d〉 ≈
∫

r=a

[−(P · r + p′)I + 2ηe] · er dA

=

∫
r→∞

[−(P · r + p′)I + 2ηe] · er dA −
∫ ∞

r=a

[(η/�2)u + ρ∇ψ] dV, (2.60)

where e =(1/2)[∇u + (∇u)T ] and I is the identify tensor. Since ∇ · u = 0, u(r = a) = 0,
and ∇p = −(η/�2)u, and u′ ∼ r−3 as r → ∞, (2.60) can be written

〈 f d〉 ≈ −
∫

r→∞
[p′ − (∇p′ · r)]er dA −

∫ ∞

r=a

ρ∇ψ dV. (2.61)

Beyond the double layer,

p′ = −(η/�2)

∫ ∞

r

(2/r ′3)CX(X · er ) dr ′ = −(1/r2)(η/�2)CX(X · er ), (2.62)

and because the integrand of the volume integral in (2.61) is exponentially small there,

〈ρ∇ψ〉 ≈ n

∫ ∞

r=a

ρ∇ψ dV. (2.63)

Therefore,

〈 f d〉 ≈ (η/�2)4π

[
ECE +

M∑
k=1

BkC
Bk + UCU

]
− n−1〈ρ∇ψ〉 (2.64)

and, hence, (2.59) becomes

0 ≈ −〈∇p〉 − (η/�2)〈u〉 + η∇2〈u〉 − n(η/�2)4π

[
ECE +

M∑
k=1

BkC
Bk + UCU

]
. (2.65)

Note that, in addition to 〈 f d〉, an electrical force 〈 f e〉 and a mechanical-contact
force 〈 f m〉 act on the inclusions. Accordingly, static equilibrium requires

〈 f m〉 = −〈 f e〉 − 〈 f d〉

≈ −(η/�2)4π

[
ECE +

M∑
k=1

BkC
Bk + UCU

]
. (2.66)

In the absence of charge, for example, −〈 f m〉 is equal to the drag force on a sphere
embedded in a Brinkman medium with viscosity η and Darcy permeability �2. Indeed,
Brinkman (1947) solved this problem exactly, obtaining

〈 f m〉 = −2πηUa(a/�)2[1 + 3(�/a) + 3(�/a)2] (ζ = 0, φ → 0), (2.67)

which shows that

2CU/a3 = 1 + 3(�/a) + 3(�/a)2 (ζ = 0, φ → 0). (2.68)
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Note that the drag force approaches the Stokes drag 6πηaU as �/a → ∞. When
�/a → 0, however, the drag approaches 2πa3(η/�2)U because the surface traction is
dominated by the pressure (dipole) arising from the outer Darcy flow: ∇2p′ =0 with
u = −(�2/η)∇p′.

2.5. Averaged (bulk) equations for unidirectional transport

With all average fluxes in the z-direction, mass and momentum conservation require
constant 〈u〉 and, hence,

〈∇p〉 = −(η/�2)〈u〉 − φ(3/a3)(η/�2)

[
ECE +

M∑
k=1

BkC
Bk + UCU

]
. (2.69)

Similarly, the (steady) average species conservation equations ∇ · 〈 j j 〉 = 0 require
constant average fluxes

〈 j j 〉 = n∞
j 〈u〉 − zje

Dj

kT
n∞

j 〈∇ψ〉 − Dj 〈∇nj 〉

+φ(3/a3)zje
Dj

kT
n∞

j

[
EDE +

M∑
k=1

BkD
Bk + UDU

]

+φ(3/a3)Dj

[
ECE

j +

M∑
k=1

BkC
Bk

j + UCU
j

]
. (2.70)

Note that ∇ · 〈∇ψ〉 = 0 in an electrically neutral composite with uniform dielectric
permittivity, so the average electric field is also constant.

The averages can be expanded as power series in the inclusion volume fraction,
e.g. 〈u〉 → U0 + φU1 + O(φ2). Therefore, since the microscale equations (asymptotic
coefficients) are accurate to O(φ), the notation is condensed by writing, for example,
〈u〉 ≡ U , where it is understood that U = U0 + φU1 + O(φ2). Clearly, E, Bj and U
in (2.69) and (2.70) need only to include the O(1) contribution to their respective
average, e.g. U → U0. The following notation is adopted for the other averaged
quantities: J j ≡ 〈 j j 〉, P ≡ 〈∇p〉, Bj ≡ 〈∇nj 〉, E ≡ −〈∇ψ〉.

With one electrolyte (M = 1) and, recall, bulk electroneutrality, there are N + 4
independent variables (E, U, P, Bk (k =1), J j (j = 1, . . . , N)) with N +1 independent
equations (see (2.69) and (2.70)). Clearly, three independent variables must be specified
for a unique solution.

For clarity, the results presented below involve a 1-1 electrolyte (NaCl), mostly with
only one non-zero forcing variable. It is important to note that, because the equations
are linear, solutions for any combination of forcing variables may be constructed. For
example, a companion paper (Hill 2006) establishes the electric field strength required
to maintain a constant electrolyte flux – driven by a bulk concentration gradient
across a membrane – with zero bulk current density.

3. Response to an electric field
Results are now presented for the application of an electric field in the absence

of average pressure and concentration gradients. These conditions prevail when
measuring the electrical conductivity, for example, and they provide a relatively
simple setting in which to study the influence of inclusions on bulk electrokinetic
transport. Steady homogeneous conditions are assumed, neglecting the influence of
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CE
j kT /(2Ia3e) U/(Eφ) = −3CE/a3

ζe/(kT ) DE/a3 (j = 1, 2) CEkT/(u∗a4e) ((nm s−1)/(V cm−1))

κa = 1 I = 9.25 × 10−6 mol l−1

−1 −3.82 × 10−1 1.04 −1.87 × 10−4 1.13
−2 −5.71 × 10−2 2.04 −3.66 × 10−4 2.20
−4 8.66 × 10−1 3.72 −6.64 × 10−4 3.99
−6 1.60 4.77 −8.40 × 10−4 5.05
−8 1.96 5.28 −9.04 × 10−4 5.44

κa = 10 I = 9.25 × 10−4 mol l−1

−1 −4.74 × 10−1 7.30 × 10−2 −1.20 × 10−3 7.22
−2 −3.98 × 10−1 1.51 × 10−1 −2.42 × 10−3 1.46 × 101

−4 −1.37 × 10−1 3.24 × 10−1 −4.63 × 10−3 2.78 × 101

−6 1.32 × 10−1 4.76 × 10−1 −5.45 × 10−3 3.28 × 101

−8 2.95 × 10−1 5.64 × 10−1 −4.70 × 10−3 2.83 × 101

κa = 100 I = 9.25 × 10−2 mol l−1

−1 −4.96 × 10−1 7.83 × 10−3 −6.97 × 10−3 4.19 × 101

−2 −4.82 × 10−1 1.79 × 10−2 −1.42 × 10−2 8.51 × 101

−4 −4.11 × 10−1 5.58 × 10−2 −2.87 × 10−2 1.73 × 102

−6 −2.53 × 10−1 1.35 × 10−1 −3.83 × 10−2 2.30 × 102

−8 −3.81 × 10−2 2.43 × 10−1 −3.58 × 10−2 2.15 × 102

Table 1. Dimensionless asymptotic coefficients (equation (3.2)) and incremental pore mobility
(equation (3.3)) for bulk electromigration of NaCl in a Brinkman medium with charged
spherical inclusions: a = 100 nm; � ≈ 0.951 nm; T =25 ◦C; D1 ≈ 1.33 × 10−9 m2 s−1 (Na+);
D2 ≈ 2.03 × 10−9 m2 s−1 (Cl−); u∗ = εsεo(kT /e)2/(ηa) ≈ 5.15 × 10−3 m s−1.

electrode polarization and electrochemical reactions. Accordingly, the average velocity
from (2.69) is

U = −φ(3/a3)ECE + O(φ2), (3.1)

and the average ion fluxes from (2.70) are

J j = zje
Dj

kT
n∞

j E + φ(3/a3)zje
Dj

kT
n∞

j EDE

+φ(3/a3)Dj ECE
j + φ(3/a3)n∞

j ECE + O(φ2). (3.2)

Asymptotic coefficients are provided in table 1 for a composite with Brinkman
screening length � ≈ 0.951 nm and inclusion radius a = 100 nm; the ζ -potentials and
(three) ionic strengths span experimentally accessible ranges. With a positive electric
field (E > 0), the counter-ions (Na+) migrate toward the ‘front’ of the inclusions,
inducing a positive electrostatic dipole moment DE > 0. When the ζ -potential is low,
however, the dipole moment reflects the dielectric polarization required to maintain
an impenetrable interface, so the dipole strength approaches the Maxwell value
DE = −(1/2)a3 (for non-conducting spheres) as |ζ | → 0. The positive concentration
dipole moments CE

j > 0 reflect the combined influences of electromigration, diffusion,
and electroneutrality. As expected from (2.47), CE < 0, because the electrical force on
the fluid and, hence, the resulting electro-osmotic flow are forward (U > 0).

3.1. Incremental pore velocity

As suggested by (3.1), the ratio

U/(Eφ) = −3CE/a3, (3.3)
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which is termed the incremental pore mobility, provides a convenient measure of the
electro-osmotic pumping capacity. When multiplied by the electric field strength and
particle volume fraction, the values in the last column of table 1, for example, yield
the O(φ) average velocity that prevails in the absence of an applied pressure gradient.
This section examines how the strength of the flow is related to the ζ -potential and
size of the inclusions, the ionic strength of the electrolyte, and the permeability of the
gel. We will see that the pore mobility is significantly influenced by polarization and
relaxation, so the qualitative form of the relationship (with a given gel permeability)
is similar to the classical electrophoretic mobility of dispersions (O’Brien & White
1978).

Consider the case in table 1 with κa =100 and ζ = −1kT /e. With E = 2 V cm−1

and φ = 10−2, the pore velocity is U ≈ 0.84 nm s−1, which is clearly very slow. If,
however, this flow is directed from a composite with a 1 cm2 cross-section into a
microfluidic channel, then it is not unreasonable to amplify the velocity by four orders
of magnitude, yielding a (modest) average velocity of 8.4 µm s−1. In this example, the
permeability (�2 = 0.9512 nm2) is relatively low, so higher velocities may be achieved
with a comparable (weak) electric field and inclusion volume fraction. Note that a
stronger electric field between (platinum) electrodes separated by a distance L ∼ 5 mm,
say, produces hydrogen and oxygen bubbles. In conventional electro-osmotic pumps,
much higher electric field strengths are achieved by catalytically recombining hydrogen
and oxygen (Yao et al. 2003). For the purpose of accurately determining the pore
mobility, however, higher electric field strengths are, perhaps, unnecessary.

The pore mobility is shown in figure 3(a) as a function of the ζ -potential for various
values of κa, with inclusion radii a = 10, 100 and 1000 nm (top-to-bottom panels), and
Brinkman screening length � ≈ 3.11 nm. Similarly to the electrophoretic mobility (e.g.
O’Brien & White 1978), at low to moderate ζ -potentials the pore mobility provides a
one-to-one connection between the (measured) pore velocity and the surface charge.
Mobility maxima arise from polarization (by electromigration) and relaxation (by
diffusion) of the equilibrium double layer. As suggested by earlier theoretical studies
examining the role of polarization and relaxation on the electrophoretic mobility
of polymer-coated particles (Saville 2000; Hill 2004; Hill & Saville 2005), these
calculations clearly demonstrate that polarization is driven by electromigration, since
convection is extremely weak when the particles are immobilized in a polymer gel.
Note that theoretical studies of electro-osmotic flow in micro-porous membranes
do not reveal such maxima, because the underlying microscale model comprises
(effectively) straight channels with charged walls (Yao & Santiago 2003).

As expected, the (incremental) pore mobility tends to increase with ζ -potential
at fixed ionic strength, and increases with ionic strength at fixed ζ -potential. Both
trends reflect the increasing charge required to maintain a constant surface potential
when varying the ionic strength. For colloids whose surface charge is independent of
electrolyte concentration, the ζ -potential increases with decreasing κa. Accurate semi-
empirical expressions for this relationship (obtained from solutions of the Poisson–
Boltzmann equation) are readily available (Russel et al. 1989). In general, however, the
dependence of surface charge density on ionic strength and pH is exceedingly difficult
to predict, and must therefore be determined empirically for specific interfaces (e.g.
see Yao et al. 2003, for silica in the presence of KCl).

For a closer connection to experiments, the pore mobility is shown in figure 3(b)
as a function of the ionic strength with three constant surface charge densities
spanning two orders of magnitude. Note that the inclusion radii are the same as in
the corresponding panels in (a). Because the surface charge is fixed, the ζ -potential
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Figure 3. The incremental pore mobility U/(Eφ) with inclusion radii a = 10 (top), 100 (middle)
and 1000 nm (bottom): aqueous NaCl at T = 25 ◦C; � ≈ 3.11 nm. (a) The mobility as a function
of the (scaled) ζ -potential ζe/(kT ) for various (scaled) reciprocal double-layer thicknesses
κa = 1, 10, 30, 100, 300 and 1000. (b) The mobility (solid lines, left axis) and ζ -potential
(dashed lines, right axis) as a function of the ionic strength with constant surface charge
densities −σ ≈ 0.179, 1.79 and 17.9 µC cm−2 (increasing upward at high ionic strength).

(dashed lines, right axis) decreases with increasing ionic strength, but the particle
size does not significantly influence the ζ -potential. Because the average velocity
reflects the combined influence of all particles in the composite, U is expected to
be proportional to the O(nσa2 ∼ σφ/a) (average) counter-charge density. Therefore,
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Figure 4. The incremental pore mobility U/(Eφ) as a function of the Brinkman screening
length � for various (scaled) ζ -potentials −ζe/(kT ) = 1, 2, 3, . . . , 6 (solid lines) 7, . . . , 10 (dashed
lines): aqueous NaCl at T = 25 ◦C; a = 100 nm; κa = 100 (I ≈ 0.0925mol l−1). An electric field
is applied in the absence of average pressure and concentration gradients. The maximum
velocity is achieved when |ζ |e/(kT ) ≈ 6.

balancing the corresponding O(Eσφ/a) electrical force with the O(ηU/�2) Darcy
drag force gives a pore mobility U/(φE) ∼ σ�2/(ηa). Indeed, comparing the mobility
axes (left sides) of figure 3(b) indicates that the mobility is, at least approximately,
inversely proportional to the inclusion radius. Again, at low ionic strengths, when the
ζ -potential is high, polarization and relaxation significantly complicate this simple
interpretation.

To highlight the influence of polymer-gel permeability, the pore mobility is shown
in figure 4 as a function of the Brinkman screening length � for various ζ -potentials.
With a particle radius a = 100 nm, the ionic strength I ≈ 0.0925 mol l−1 yields κa =100
and κ� > 1 at most values of �. Now the mobility increases as �m with exponent m(�)
in the range 1–2, indicating that viscous stresses and Darcy drag balance the electrical
body force. Note that the mobility increases linearly with the ζ -potential when |ζ |
is small, and, again, mobility maxima are evident when |ζ | ≈ 6kT /e. Pore mobilities
are shown in figure 5 at a much lower ionic strength I ≈ 9.25 × 10−6 mol l−1 yielding
κa =1. Now, as expected, the mobility increases linearly with �2, since κ� < 1. The
monotonic increase with ζ -potential is because the surface charge densities are low
and, hence, polarization is weak.

3.2. Electro-osmotic pumping

Recall that the (incremental) pore mobility was defined with zero average pressure
gradient, and therefore neglects the pressure differential �p = PL required to pump
fluid through an external network. This section briefly addresses coupling the
composite and electrodes – which together are referred to as an electro-osmotic
pump – to a microfluidic network. The analysis briefly considers the force exerted on
the composite, electrical power consumption, and pump efficiency.

Let us consider a closed loop, where fluid in the composite exits from one side,
passes through a microfluidic network, and returns to the other side. To ensure that all
electrical current flows through the composite, we assume that the electrical resistance
of the network is much greater than that of the pump, which is realized when the
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Figure 5. The incremental pore mobility U/(Eφ) as a function of the Darcy permeability
�2 for various (scaled) ζ -potentials −ζe/(kT ) = 1, 2, 3, . . . , 6 (solid lines) 10 (dashed line):
aqueous NaCl at T = 25 ◦C; a = 100 nm; κa = 1 (I ≈ 9.25 × 10−6 mol l−1).

length (area) of the external network Le (d2) is much greater (smaller) than that of
the composite L (A). Next, assuming laminar viscous flow, the pressure drop through
the network may be written

�p ≈ ηc(Le/d
4)Q, (3.4)

where d2 is the (characteristic) channel cross-sectional area, Q is the volumetric flow
rate, and c is an O(1) constant that reflects the shape and length the network sections.

Equating the network pressure drop to the pump characteristic emerging from
(2.65),

�p/L = −(η/�2)U − φ(3/a3)(η/�2)(ECE + UCU ), (3.5)

gives

[ηc(Le/d
4)(A/L) + (η/�2) + φ(3/a3)(η/�2)CU ]Q/A = −φ(3/a3)(η/�2)ECE, (3.6)

where A and L are the composite cross-sectional area and length.
The contribution of the back-flow, as represented by the asymptotic coefficient CU

in (3.6), is obtained from the (U) problem. This and other asymptotic coefficients are
provided in table 2 for a composite with Brinkman screening length � ≈ 0.951 nm and
inclusion radius a = 100 nm; again, the ζ -potentials and (three) ionic strengths span
experimentally accessible ranges. Here, the average force exerted by the polymer on
the inclusions 〈 f m〉 = −4π(η/�2)CU U (equation (2.66)) is independent of the surface
charge. Note that CU = (1/2)a3 when the only contribution to the force is due to
Darcy flow (�/a � 1); the (constant) value CU/a3 ≈ 0.514 in table 2, which reflects a
small viscous contribution (�/a = 0.00951), is precisely the value given by Brinkman’s
theory (equation (2.67)). The flow-induced electrical and concentration polarization,
as represented by DU and CU

j , are related to the streaming potential and streaming
current, and are included here only for future reference.

When the dominant resistance comes from the composite itself (the second term
on the left-hand side of (3.6)), the pump performance curve simplifies to

Q ≈ −φ(3/a3)AECE, (3.7)
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CU
j u∗/(2Ia2)

ζe/(kT ) DUeu∗/(kT a2) (j = 1, 2) CU/a3

κa = 1 I = 9.25 × 10−6 mol l−1

−1 6.70 × 10−1 8.71 × 10−2 5.14 × 10−1

−2 1.32 2.03 × 10−1 5.14 × 10−1

−4 2.44 4.49 × 10−1 5.14 × 10−1

−6 3.10 6.06 × 10−1 5.14 × 10−1

−8 3.33 6.44 × 10−1 5.14 × 10−1

κa = 10 I = 9.25 × 10−4 mol l−1

−1 4.38 × 10−2 7.76 × 10−4 5.14 × 10−1

−2 9.10 × 10−2 2.16 × 10−3 5.14 × 10−1

−4 1.81 × 10−1 5.58 × 10−3 5.14 × 10−1

−6 2.19 × 10−1 7.08 × 10−3 5.14 × 10−1

−8 1.96 × 10−1 5.74 × 10−3 5.14 × 10−1

κa = 100 I = 9.25 × 10−2 mol l−1

−1 2.55 × 10−3 4.49 × 10−6 5.14 × 10−1

−2 5.33 × 10−3 1.27 × 10−5 5.14 × 10−1

−4 1.14 × 10−2 3.69 × 10−5 5.14 × 10−1

−6 1.64 × 10−2 5.93 × 10−5 5.14 × 10−1

−8 1.70 × 10−2 6.14 × 10−5 5.14 × 10−1

Table 2. Dimensionless asymptotic coefficients for bulk convection of NaCl in a
Brinkman medium with charged spherical inclusions: a = 100 nm; � ≈ 0.951 nm; T = 25 ◦C,
D1 ≈ 1.33 × 10−9 m2 s−1 (Na+); D2 ≈ 2.03 × 10−9 m2 s−1 (Cl−); u∗ ≈ 5.15 × 10−3 m s−1.

which is clearly independent of the applied load. Neglecting constraints imposed
by electrolysis, for example, the maximum length of the composite may be set by
consideration of the electrical power consumption

P ≈ K∞E2AL + O(φ). (3.8)

Note that the force exerted on the composite

F = −�pA ≈ ηc(Le/d
4)A2φ(3/a3)ECE (3.9)

reflects the pressure required to pump fluid through the network. Therefore, the
average shear stress τ ∼ − F/(L

√
A) required to support the composite scales as

τ ∼ −ηc(Le/d
4)

(
A3/2/L

)
φ(3/a3)ECE. (3.10)

Since the area A will be set by the flow rate, the length of the composite should be
set by the maximum allowable shear stress.

Finally, the pump efficiency, as measured by the ratio of the rate of flow work
|Q�p| to the electrical power consumption P is

E ≈ ηc(Le/d
4)[φ(3/a3)CE]2A/(K∞L). (3.11)

Because CE depends on ζ , κa, �, etc., care must be taken in interpreting this equation.
Nevertheless, geometrical considerations alone clearly favour thin membranes with
large cross-sectional area, operating with a low ionic strength (conductivity) and a
high inclusion volume fraction. In practice, an optimal design (with specified flow Q

and, perhaps, voltage V = �ψ) will be constrained by consideration of the mechanical
strength of the composite (as indicated by (3.9) and (3.10)), which clearly diminishes
with decreasing thickness L and increasing area A.
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3.3. Incremental pressure gradient

Now consider the pressure gradient produced by an average electric field with zero
average flow. This situation may be realized when an electrolyte-saturated composite
is bounded by a vessel with impenetrable walls. A practical application involves
measuring the differential (static) pressure �p to infer the permeability of the polymer
gel or, for example, the ζ -potential of the inclusions. Note that zero average flow does
not imply stationary fluid at the microscale, because the ‘inner’ electro-osmotic flow
around each inclusion is balanced by a far-field pressure-driven back-flow, analogous
to the situation encountered in microelectrophoresis capillaries with blocked ends.

Setting U = 0 in (2.69) gives

P = −φ(η/�2)(3/a3)CE E + O(φ2), (3.12)

which is termed the incremental pressure gradient. Representative values may be
calculated by multiplying the incremental pore mobilities in the last column of
table 1, and plotted in figures 3–5, by their respective values of η/�2.

It is interesting to note that when κ� < 1 and, hence, the pore mobility increases
linearly with �2 (see figure 5), the pressure gradient is independent of the permeability.
This is because increasing the permeability increases the electric-field-induced flow,
and, since the back-flow and accompanying pressure gradient are proportional to each
other, it follows that the pressure gradient is independent of �2. However, at higher
ionic strengths, when κ� > 1 (see figure 4), the pressure gradient evidently decreases
with �2. This is because the electric-field-induced flow within the diffuse double layers –
where resistance to flow is predominantly due to viscous stress – increases more slowly
with the permeability than the Darcy drag beyond the double layers decreases.

Note that the incremental pressure gradient reflects the same asymptotic coefficient
CE as the pore mobility, so it is important to establish whether measuring the electric-
field-induced pressure gradient offers a significant advantage over measuring the pore
mobility. Recall that pore mobilities can generate low but measurable velocities in a
microchannel. From table 1 with κa =100 and ζ = −1kT /e, setting E =2 V cm−1

and φ = 10−2 yields P ≈ 8.76 kPa cm−1. Therefore, when L =5 mm, for example, the
pressure differential is |�p| ≈ 4.38 kPa (static head of 0.43 m of water). Clearly, the
pressure gradient induced by a relatively weak electric field is sufficient to produce a
modest (static) pressure.

3.4. Species fluxes

Let us write the average flux of each species from (3.2) as

J j = zje
Dj

kT
n∞

j E
(
1 + φ�E

j

)
, (3.13)

where

�E
j = �E

j,e + �E
j,d + �E

j,c

= (3/a3)DE + (3/a3)
kT

zjen
∞
j

CE
j + (3/a3)

kT

zjeDj

CE (3.14)

is the sum of incremental microscale contributions (of electromigration, diffusion, and
convection, respectively) to the average electromigrative flux.

The ratio of the convective and electromigrative terms is

�E
j,c/�

E
j,e =

CE

zje(Dj/kT )DE
∼ Pej /zj , (3.15)
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and the ratio of the convective and diffusive terms is

�E
j,c/�

E
j,d =

n∞
j CE

DjC
E
j

∼ Pej , (3.16)

where the Péclet number Pej = ucκ
−1/Dj is typically very small. The characteristic

(microscale) velocity uc may be estimated by balancing the O(Eσκ) electrical force
(per unit volume) with the O(ucη/�2) Darcy drag force, giving uc ∼ Eσκ�2/η. With
E ∼ 102 V cm−1, σ ∼ 1 µC cm−2, κ−1 ∼ 102 nm, � ∼ 1 nm, and η ∼ 10−3 kg m−1s−1,
uc ∼ 1 µm s−1. Further, with a ∼ 1 µm and Dj ∼ 10−9 m2 s−1, Pej ∼ 10−4, indicating
that diffusion and electromigration (zj = 0) dominate convection. Clearly, for charged
species with zj ∼ 1, electromigrative fluxes are comparable to diffusive fluxes.

Incremental contributions to the ion fluxes are provided in table 3 for the composite
whose asymptotic coefficients are shown in table 1. These confirm that the convective
contribution �E

j,c is small, and that the electromigrative contribution �E
j,e approaches

the Maxwell value �E
j,e = −3/2 for impenetrable (non-conducting) spheres as |ζ | →

0. Furthermore, the electromigrative (�E
j,e) and diffusive (�E

j,d) contributions for
Na+ and Cl− vary significantly with ionic strength. For example, at low electrolyte
concentration, the diffusive term dominates, enhancing the flux of the counter-ion
(Na+) and attenuating that of the co-ion (Cl−).

3.5. Electrical conductivity

The electrical conductivity of colloidal dispersions is well known to reflect the particle
surface charge density (Russel et al. 1989). The conductivity of a composite with
immobilized particles presents a relatively simple problem when the electrolyte ions
are unhindered by the polymer, because only the electrolyte ions – not the charge
on the particles (macroions) themselves – contribute to charge transfer. This section
establishes whether the electrical conductivity is sensitive to the surface charge and,
possibly, the permeability of the polymer gel.

From the fluxes in (3.2), the average current density may be written

I =

N∑
j=1

zje J j ≈ K∞ E + φ(3/a3)E

[
K∞DE +

N∑
j=1

zjeDjC
E
j

]
, (3.17)

where

K∞ =

N∑
j=1

(zje)
2 Dj

kT
n∞

j (3.18)

is the conductivity of the electrolyte. The conductivity of the composite is defined as

K∗ = I/E = K∞(1 + φ�K ), (3.19)

where �K is termed the (dimensionless) conductivity increment.
Equations (3.17)–(3.19) are equivalent to expressions derived by O’Brien (1981)

for the conductivity of dilute colloidal dispersions with the particles undergoing
electrophoresis. Here, the asymptotic coefficients are different because the particles
are stationary†. When the ζ -potential is low and, hence, ion fluxes are unperturbed by
the surface charge, the dipole strength for non-conducting spheres equals the Maxwell

† When particles undergo electrophoresis in a Newtonian electrolyte, the far-field (solenoidal)
velocity disturbance is irrotational, decaying as r−3 as r → ∞. When fixed in electrolyte without
polymer, however, the far-field disturbance reflects a net force, decaying as r−1 as r → ∞.
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ζe/(kT ) �E
j,e (j = 1, 2) �E

1,d (Na+) (= −�E
2,d ) �E

1,c (Na+) �E
2,c (Cl−) �E

1 (Na+) �E
2 (Cl−) �K

κa = 1 I = 9.25 × 10−6 mol l−1

−1 −1.15 6.25 −2.17 × 10−4 1.42 × 10−4 5.10 −7.39 −2.44
−2 −1.71 × 10−1 1.22 × 101 −4.25 × 10−4 2.78 × 10−4 1.21 × 101 −1.24 × 101 −2.72
−4 2.60 2.23 × 101 −7.70 × 10−4 5.05 × 10−4 2.49 × 101 −1.97 × 101 −2.05
−6 4.79 2.86 × 101 −9.74 × 10−3 6.38 × 10−4 3.34 × 101 −2.39 × 101 −1.16
−8 5.89 3.17 × 101 −1.05 × 10−3 6.87 × 10−4 3.76 × 101 −2.58 × 101 −6.91 × 10−1

κa = 10 I = 9.25 × 10−4 mol l−1

−1 −1.42 4.38 × 10−1 −1.39 × 10−3 9.12 × 10−4 −9.85 × 10−1 −1.86 −1.51
−2 −1.19 9.08 × 10−1 −2.81 × 10−3 1.84 × 10−3 −2.88 × 10−1 −2.10 −1.38
−4 −4.11 × 10−1 1.95 −5.36 × 10−3 3.52 × 10−3 1.53 −2.35 −8.16 × 10−1

−6 3.96 × 10−1 2.86 −6.32 × 10−3 4.14 × 10−3 3.25 −2.46 −1.98 × 10−1

−8 8.84 × 10−1 3.38 −5.45 × 10−3 3.57 × 10−3 4.26 −2.50 1.81 × 10−1

κa = 100 I = 9.25 × 10−2 mol l−1

−1 −1.49 4.70 × 10−2 −8.08 × 10−3 5.30 × 10−3 −1.45 −1.53 −1.50
−2 −1.45 1.08 × 10−1 −1.64 × 10−2 1.08 × 10−2 −1.36 −1.54 −1.47
−4 −1.23 3.35 × 10−1 −3.33 × 10−2 2.18 × 10−2 −9.31 × 10−1 −1.55 −1.30
−6 −7.59 × 10−1 8.11 × 10−1 −4.44 × 10−2 2.91 × 10−2 7.38 × 10−3 −1.54 −9.27 × 10−1

−8 −1.14 × 10−1 1.46 −4.15 × 10−2 2.72 × 10−2 1.30 −1.55 −4.17 × 10−1

Table 3. Incremental contributions (see (3.14)) to the bulk electromigration of NaCl in a Brinkman medium with charged spherical inclusions:
a = 100 nm; � ≈ 0.951 nm; T =25 ◦C; D1 ≈ 1.33 × 10−9 m2 s−1 (Na+); D2 ≈ 2.03 × 10−9 m2 s−1 (Cl−).
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Figure 6. The (scaled) conductivity increment �K (see (3.19)) as a function of the (scaled)
ζ -potential ζe/(kT ) for various (scaled) reciprocal double-layer thicknesses κa = 1, 2, 10 and
100 (aqueous NaCl at T = 25 ◦C with a =100 nm) for particles undergoing electrophoresis
(solid lines) and stationary particles (dashed lines), both in electrolyte without polymer.

value DE = −(1/2)a3, so �K → −3/2 as |ζ | → 0. In general, however, the conductivity
increment also reflects the charge of the inclusions and the ionic strength.

Similarly to dispersions, the average convective term (involving CE in (3.2)) does
not influence the conductivity increment (because of electrical neutrality), and the
diffusive term (involving CE

j ) vanishes only when the species have equal mobilities.

In general, the (microscale) electromigrative and diffusive terms (involving DE and
CE

j ) contribute to the average current density. However, because these are influenced
by fluid motion, the conductivity of a composite is not the same as when particles
are fixed in an electrolyte without polymer. As expected, because only the electrolyte
ions contribute to charge transfer, the conductivity of a composite is lower than when
particles undergo electrophoresis.

Representative conductivity increments for mobile (solid lines) and stationary
(dashed lines) particles in an NaCl electrolyte without polymer are compared in
figure 6.† At low ionic strength (small κa), immobilizing the particles decreases
the conductivity increment, because particle migration (electrophoresis) contributes
significantly to charge transfer. At high ionic strength (κa > 10), however, the
conductivity increments for mobile and fixed particles are (practically) the same. This
is because the density of charge added by the particles (macroions) is vanishingly small
compared to the density of bulk electrolyte ions, so the conductivity reflects only the
contribution of (dielectric and double-layer) polarization to the average electric field.

In contrast to KCl and HClO4 electrolytes (see O’Brien 1981), the conductivity
increment with NaCl decreases with increasing ζ -potential when ζ and κa are small.
This may be attributed to the counter-ion (Na+) having a significantly lower mobility
than the co-ion (Cl−). For KCl, the mobilities of K+ and Cl− are very similar,
yielding a monotonically increasing conductivity increment. For HClO4, however, the
counter-ion (H+) has a significantly higher mobility than the co-ion (ClO−

4 ), yielding

† The computations for particles in a pure electrolyte were performed with software (called
MPEK, available from the author) based on the work of Hill et al. (2003). These accurately
reproduced earlier calculations by O’Brien (1981) for KCl and HClO4 electrolytes.
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Figure 7. The (scaled) conductivity increment �K (see (3.19)) as a function of the (scaled)
ζ -potential ζe/(kT ) for various (scaled) reciprocal double-layer thicknesses κa = 1, 2, 10, 100
and 1000: aqueous NaCl at T = 25 ◦C; a = 100 nm; � ≈ 3.11 (solid lines); stationary particles
in electrolyte without polymer (dashed lines).

a conductivity increment that increases more rapidly (linearly) with |ζ | (see O’Brien
1981).

The conductivity increment for particles with radius a = 100 nm embedded in a
polymer gel with Brinkman screening length � ≈ 3.11 nm (solid lines) is shown in
figure 7. Similar calculations (not shown) reveal that an order-of-magnitude increase
in the permeability �2 produces almost the same values at all ζ -potentials and ionic
strengths (values of κa). This confirms that the average current density is dominated by
electromigration and diffusion. The conductivity increments (solid lines) are compared
to values for stationary particles in an electrolyte without polymer (dashed lines).
These results are almost the same at high ionic strength when the diffuse double
layer is thin compared to the Brinkman screening length, i.e. when κ� � 1. Under
these conditions, the electrical force (inside the diffuse double layer) is balanced by
viscous stress and, hence, the convective flows are similar. When κ� = κa(�/a) = 1, for
example, κa ≈ 100/3.11 ≈ 32 and, as expected, the limiting behaviour (κ� � 1) at high
ionic strength occurs when κa exceeds this value.

4. Summary
A rigorous theoretical methodology has been presented to calculate steady

electrokinetic transport of electrolytes in a continuous polymer gel embedded with
charged spherical inclusions. Composites with this microstructure are candidates for
enhanced gel-electrophoresis, chemical sensing, membrane separation, and, perhaps,
electro-osmotic pumping technologies. This work was also motivated by a desire to
interpret experiments that probe the surface charge of immobilized colloids and the
micro-rheology of delicate polymer gels.

From a numerically exact treatment of electromigration, diffusion, and convective
transport past a single inclusion in an unbounded polymer gel, averaged equations
describing bulk transport properties were derived. The theory was applied to calculate
the response to a steady electric field with a uniform bulk electrolyte concentration.
Note that the response to a bulk electrolyte concentration gradient is treated in a
companion paper (Hill 2006). In this work, electromigration and diffusion were found
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to be independent of convection and, hence, of the polymer-gel (Darcy) permeability.
However, the strength of electro-osmotic flow reflects the gel permeability and, to
a lesser (but still significant) extent, polarization and relaxation by electromigration
and diffusion.

When particles are immobilized in a (neutral) polymer gel, the electrical conductivity
is independent of the polymer, whereas the pore mobility – similarly to the
electrophoretic mobility of dispersions – reflects the size and charge of the inclusions
and the Darcy permeability. Furthermore, when the Debye length is smaller (greater)
than the Brinkman screening length � (square root of the Darcy permeability), the
pore mobility increases linearly (quadratically) with �.

The variation of pore mobility with ζ -potential and ionic strength is more
complicated because of the significant influence of polarization and relaxation.
Nevertheless, the mobility is (approximately) inversely proportional to the inclusion
radius, indicating, as expected, that the average flow is proportional to the average
counter-charge density in the composite.

The Darcy drag of the intervening polymer gel leads to slow flows that will often
be independent of the differential pressure required to pump fluid through a (modest)
microfluidic network. Optimal pumping efficiency is favoured by thin membranes with
large cross-section, high inclusion volume fractions, and low electrolyte conductivities.

The present model assumes that the polymer gel does not influence ion mobilities
(diffusion coefficients), and that the volume fraction of the inclusions is small. By
analogy with Maxwell’s well-known theory for conduction in dilute random arrays
of spheres, the theory advanced in this work may be accurate at moderate volume
fractions. Note also that the calculations require the bulk electrostatic potential and
electrolyte ion concentrations to vary slowly in space (and time). Future development
of the model will accommodate harmonic temporal fluctuations in the applied electric
field, permitting the interpretation of dielectric relaxation spectroscopy experiments.

Supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC), through grant number 204542, and the Canada Research Chairs program
(Tier II). The author thanks I. Ispolatov (University of Santiago) for fruitful
discussions related to this work, and an anonymous referee for helpful suggestions.

Appendix. Derivation of the averaged momentum equation
This Appendix supplements § 2.4 where the single-particle microscale problem is

adopted to quantify the influence of the inclusions on bulk momentum transport. Note
that the closures in this work neglect hydrodynamic interactions between inclusions,
which are screened by the intervening Brinkman medium. The reader is referred
to Hinch (1977) for details necessary to account for hydrodynamic interactions. Note
also that the fields obtained from the single-particle problem in this work approximate
the conditionally averaged fields in Hinch’s ensemble averaging methodology. Because
the microstructure is homogeneous, the volume averages below are equivalent to
ensemble averages. Integrals over the surface or volume of a (spherical) inclusion
centred at r = 0 are identified by a range of integration that involves the radial
coordinate r; otherwise integrals refer to ‘representative control volumes’. Unless
stated otherwise, the notation and symbols below are the same as in the main text.

Outside the inclusions, the (inertialess) microscale momentum conservation equation
is

0 = ∇ · T − (η/�2)u − ρ∇ψ + ρf g, (A 1)
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where T= −pI + 2ηe is the Newtonian stress tensor, ρf is the fluid density, ρf g is a
uniform body force (e.g. gravity), and p is the change density.

Similarly, let the microscale momentum conservation equation inside the (rigid)
inclusions be

0 = ∇ · Tp + ρp g + f g, (A 2)

where Tp is the stress tensor, and ρp is the particle density. Note that f g is a
generalized function to represent the electrical and mechanical-contact forces acting
on the surfaces of the inclusions: f g = 0 when r = a, and

V −1

∫
V

f g dV = n〈 f g〉 (A 3)

when nV � 1 and V 1/3 is small compared to the characteristic macroscopic length
scale.

Averaging the momentum conservation equation yields Brinkman’s equation for
the continuous phase (fluid-saturated polymer gel), with additional terms arising from
the inclusions:

0 = ∇ · 〈T〉 − (η/�2)〈u〉 − 〈ρ∇ψ〉 + ρf g

+ ∇ ·
{

n

〈∫
r<a

(Tp + pI) dV

〉}
+ n〈 f g〉 + φ(ρp − ρf )g. (A 4)

Note that 〈ρ∇ψ〉 includes only the counter-charge; the influence of the fixed
surface charge is captured by 〈 f g〉, which is the sum of the average electrical 〈 f e〉
and mechanical-contact 〈 f m〉 forces acting on the surfaces of the inclusions (or more
generally inside). Accordingly, the (averaged) equation of static equilibrium for the
(immobilized) inclusions is

n〈 f d〉 + n〈 f g〉 + φρp g = 0, (A 5)

where

〈 f d〉 =

〈∫
r=a

T · er dA

〉
(A 6)

is the average (drag) force exerted by the fluid on the inclusions.
A useful identity for transforming volume to surface integrals is obtained by

differentiating the product (summation on repeated indices)

∂(αklm...xi)/∂xj = xi∂αklm.../∂xj + αklm...δij , (A 7)

where αklm... are the components of an arbitrary-order tensor (e.g. stress). Integrating
this over a volume

∫
dV enclosed by a surface

∫
dA and applying Gauss’s integral

theorem gives ∫
αklm... dV =

∫
xiαklm...n̂j dA −

∫
xi∂αklm.../∂xj dV. (A 8)

Therefore, with Tp = T at r = a, and ∇ · Tp = −ρp g and e = 0 (rigid particles) when
r < a, it follows that〈∫

r<a

(Tp + pI) dV

〉
=

〈∫
r=a

r2ηe · er dA

〉
. (A 9)

In general, body forces and the isotropic stress contribute 〈
∫

r( f g +ρp g − ∇p) dV 〉
to the right-hand side of (A 9), but these integrals vanish if, on average, the
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(internal) body-force distributions and (internal) pressure gradient are even functions
of position. With a macroscale velocity gradient (not considered in this work), the
extensional and rotational contributions to e are even functions of position, so
〈
∫

r = a
re · er dA〉 will be linear in 〈∇u〉 and, therefore, will contribute to the bulk

(deviatoric) stress by modifying the effective viscosity η′ (e.g. the well-known Einstein
viscosity for dilute, force-free suspensions).

Finally, collecting the results from (A 4)–(A 9) gives

0 = ∇ · 〈T〉 − (η/�2)〈u〉 − 〈ρ∇ψ〉 + (1 − φ)ρf g + ∇ ·
{

n2η

〈∫
r=a

re · er dA

〉}
− n〈 f d〉.

(A 10)

The correctness of (A 10) can be verified, in part, by considering a stationary fixed
bed of inclusions in the absence of electrical forces. Accordingly, (A 10) simplifies to

0 = −∇〈p〉 + (1 − φ)ρf g − n〈 f d〉,

and the static equillibrium of the inclusions requires

0 = n〈 f d〉 + n〈 f g〉 + φρp g. (A 11)

Therefore,

0 = −∇〈p〉 + n〈 f g〉 + ρf g + φ(ρp − ρf )g, (A 12)

and, hence, in a stationary fluid where ∇〈p〉 = ρf g, the average force required to
immobilize the inclusions is simply

〈 f g〉 = (φ/n)(ρf − ρp)g = (4/3)πa3(ρf − ρp)g. (A 13)
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